(一)白鲸优化(BWO)算法
白鲸优化(BWO)算法一种基于群体的元启发式算法,用于解决优化问题。BWO的灵感来自白鲸的行为,包括三个阶段:探索阶段,开发阶段和鲸鱼坠落阶段。
(二)Matlab代码
1.主函数
BWO
function [xposbest,fvalbest,Curve] = BWO(Npop,Max_it,lb,ub,nD,fobj) %NPOP-临时种群 % Max_it-最大迭代次数 %lb-下限 %ub-上限 %nD-维度 %fobj-适应度函数 % disp('Beluga Whale Optimization is optimizing your problem'); fit = inf*ones(Npop,1); newfit = fit; Curve = inf*ones(1,Max_it); kk = zeros(1,Max_it); Counts_run = 0; if size(ub,2)==1 lb = lb*ones(1,nD); ub = ub*ones(1,nD); end pos = rand(Npop,nD).*(ub-lb)+lb; for i = 1:Npop fit(i,1) = fobj(pos(i,:)); Counts_run = Counts_run+1; end [fvalbest,index]=min(fit); xposbest = pos(index,:); T = 1; while T <= Max_it newpos = pos; WF = 0.1-0.05*(T/Max_it); % The probability of whale fall kk = (1-0.5*T/Max_it)*rand(Npop,1); % The probability in exploration or exploitation for i = 1:Npop if kk(i) > 0.5 % exploration phase r1 = rand(); r2 = rand(); RJ = ceil(Npop*rand); % Roulette Wheel Selection while RJ == i RJ = ceil(Npop*rand); end if nD <= Npop/5 params = randperm(nD,2); newpos(i,params(1)) = pos(i,params(1))+(pos(RJ,params(1))-pos(i,params(2)))*(r1+1)*sin(r2*360); newpos(i,params(2)) = pos(i,params(2))+(pos(RJ,params(1))-pos(i,params(2)))*(r1+1)*cos(r2*360); else params=randperm(nD); for j = 1:floor(nD/2) newpos(i,2*j-1) = pos(i,params(2*j-1))+(pos(RJ,params(1))-pos(i,params(2*j-1)))*(r1+1)*sin(r2*360); newpos(i,2*j) = pos(i,params(2*j))+(pos(RJ,params(1))-pos(i,params(2*j)))*(r1+1)*cos(r2*360); end end else % exploitation phase r3 = rand(); r4 = rand(); C1 = 2*r4*(1-T/Max_it); RJ = ceil(Npop*rand); % Roulette Wheel Selection while RJ == i RJ = ceil(Npop*rand); end alpha=3/2; sigma=(gamma(1+alpha)*sin(pi*alpha/2)/(gamma((1+alpha)/2)*alpha*2^((alpha-1)/2)))^(1/alpha); % Levy flight u=randn(1,nD).*sigma; v=randn(1,nD); S=u./abs(v).^(1/alpha); KD = 0.05; LevyFlight=KD.*S; newpos(i,:) = r3*xposbest - r4*pos(i,:) + C1*LevyFlight.*(pos(RJ,:)-pos(i,:)); end % boundary Flag4ub = newpos(i,:)>ub; Flag4lb = newpos(i,:)<lb; newpos(i,:)=(newpos(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; newfit(i,1) = fobj(newpos(i,:)); % fitness calculation Counts_run = Counts_run+1; if newfit(i,1) < fit(i,1) pos(i,:) = newpos(i,:); fit(i,1) = newfit(i,1); end end for i = 1:Npop % whale falls if kk(i) <= WF RJ = ceil(Npop*rand); r5 = rand(); r6 = rand(); r7 = rand(); C2 = 2*Npop*WF; stepsize2 = r7*(ub-lb)*exp(-C2*T/Max_it); newpos(i,:) = (r5*pos(i,:) - r6*pos(RJ,:)) + stepsize2; % boundary Flag4ub = newpos(i,:)>ub; Flag4lb = newpos(i,:)<lb; newpos(i,:)=(newpos(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; newfit(i,1) = fobj(newpos(i,:)); % fitness calculation Counts_run = Counts_run+1; if newfit(i,1) < fit(i,1) pos(i,:) = newpos(i,:); fit(i,1) = newfit(i,1); end end end [fval,index]=min(fit); if fval<fvalbest fvalbest = fval; xposbest = pos(index,:); end kk_Record(T) = kk(1); Curve(T) = fvalbest; T = T+1; end % display(['The function call is ', num2str(Counts_run)]);
2.测试函数
Get_Functions_details
function [lb,ub,dim,fobj] = Get_Functions_details(F) switch F case 'F1' fobj = @F1; lb=-100; ub=100; dim=30; case 'F2' fobj = @F2; lb=-10; ub=10; dim=30; case 'F3' fobj = @F3; lb = -1; ub = 1; dim = 30; case 'F4' fobj = @F4; lb=-100; ub=100; dim=30; case 'F5' fobj = @F5; lb=-100; ub=100; dim=30; case 'F6' fobj = @F6; lb=-30; ub=30; dim=30; case 'F7' fobj = @F7; lb=-100; ub=100; dim=30; case 'F8' fobj = @F8; lb=-1.28; ub=1.28; dim=30; case 'F9' fobj = @F9; lb=-5; ub=10; dim=30; case 'F10' fobj = @F10; lb=-500; ub=500; dim=30; case 'F11' fobj = @F11; lb=-10; ub=10; dim=30; case 'F12' fobj = @F12; lb=-5; ub=5; dim=30; case 'F13' fobj = @F13; lb=-5.12; ub=5.12; dim=30; case 'F14' fobj = @F14; lb=-32; ub=32; dim=30; case 'F15' fobj = @F15; lb=-600; ub=600; dim=30; case 'F16' fobj = @F16; lb=-10; ub=10; dim=30; case 'F17' fobj = @F17; lb=-50; ub=50; dim=30; case 'F18' fobj = @F18; lb=-50; ub=50; dim=30; case 'F19' fobj = @F19; lb=-65; ub=65; dim=2; case 'F20' fobj = @F20; lb=-5; ub=5; dim=4; case 'F21' fobj = @F21; lb=-5; ub=5; dim=2; case 'F22' fobj = @F22; lb=0; ub=10; dim=4; case 'F23' fobj = @F23; lb=0; ub=10; dim=4; case 'F24' fobj = @F24; lb=0; ub=10; dim=4; end end % F1 function o = F1(x) o=sum(x.^2); end % F2 function o = F2(x) o=sum(abs(x))+prod(abs(x)); end % F3 function o = F3(x) dim = size(x,2); o=0; for i=1:dim o=o+abs(x(i))^(i+1); end end % F4 function o = F4(x) dim=size(x,2); o=0; for i=1:dim o=o+sum(x(1:i))^2; end end % F5 function o = F5(x) o=max(abs(x)); end % F6 function o = F6(x) dim=size(x,2); o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2); end % F7 function o = F7(x) o=sum(abs((x+.5)).^2); end % F8 function o = F8(x) dim=size(x,2); o=sum([1:dim].*(x.^4))+rand; end % F9 function o = F9(x) dim = size(x,2); o = sum(x.^2)+(sum(0.5*[1:dim].*x))^2+(sum(0.5*[1:dim].*x))^4; end % F10 function o = F10(x) o=sum(-x.*sin(sqrt(abs(x)))); end % F11 function o = F11(x) dim = size(x,2); o = 1+sum(sin(x(1:dim)).^2)-exp(-sum(x.^2)); end % F12 function o = F12(x) dim = size(x,2); o = 0.5*sum(x(1:dim).^4-16*x(1:dim).^2+5*x(1:dim)); end % F13 function o = F13(x) dim=size(x,2); o=sum(x.^2-10*cos(2*pi.*x))+10*dim; end % F14 function o = F14(x) dim=size(x,2); o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1); end % F15 function o = F15(x) dim=size(x,2); o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1; end % F16 function o = F16(x) dim = size(x,2); o = (sum(sin(x(1:dim)).^2) - exp(-sum(x.^2)))*exp(-sum(sin(sqrt(abs(x(1:dim)))).^2)); end % F17 function o = F17(x) dim=size(x,2); o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*... (1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4)); end % F18 function o = F18(x) dim=size(x,2); o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+... ((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4)); end % F19 function o = F19(x) aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,... -32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32]; for j=1:25 bS(j)=sum((x'-aS(:,j)).^6); end o=(1/500+sum(1./([1:25]+bS))).^(-1); end % F20 function o = F20(x) aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246]; bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK; o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2); end % F21 function o = F21(x) o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4); end % F22 function o = F22(x) aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6]; cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5]; o=0; for i=1:5 o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1); end end % F23 function o = F23(x) aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6]; cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5]; o=0; for i=1:7 o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1); end end % F24 function o = F24(x) aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6]; cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5]; o=0; for i=1:10 o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1); end end
3.主程序
main
clear all; close all; clc; Function_name = 'F1'; % function name Npop = 50; % Number of search agents Max_it = 1000; % Maximum number of iterations [lb,ub,nD,fobj]=Get_Functions_details(Function_name); [xposbest,fvalbest,Curve]=BWO(Npop,Max_it,lb,ub,nD,fobj);
引用:Zhong Changting (2023). Beluga whale optimization (BWO) (https://www.mathworks.com/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo) MATLAB Central File Exchange.